
NASA-CR-19688Z

IH. F-. I2

1:'j,,',¢_r>

The KAPTUR Environment: An Operations Concept

Contract Number NAS5-30680
Task 12

Prepared For:.

NASA/Goddard Space Flight Center
Data Systems Technology Division

Greenbelt, ME) 20771

August 18, 1989

CTA INCORPORATED

6116 Executive Boulevard, Suite 800
Rockville, MD 20853

(301)816-1200

(NASA-CR-196881) THE KAPTUR

ENVIRONMENT: AN OPERATIONS CONCEPT

(Computer Technology Associates)

37 p

N95-I0824

Unclas

G3/61 0023652



TABLE OF CONTENTS

Section

LIST OF FIGURES

1 INTRODUCTION

1.1 A Scenario of the Use of KAPTUR

1.2 References

2 AN OVERVIEW OF KAPTUR

2.1 Understanding POCC Architectures

2.2 Specifying New Architectures

3 THE KAFFUR INTERFACE

3.1 General Interface Issues

3.2 The KAPTUR Interface

Home Window
Selection Window
View Window
Edit Window
New Window
Print Window

Clipboard
Distinctive Features Window
Text Windows
Context Window

Page

°°°

111

1-1

1-3

1-6

2-1

2-1

2-2

3-1

3-1

3-2

3-2

3-5

3-8

3-10

3-13
3-13

3-16

3-18

3-20

3-21

ii



LIST OF FIGURES

Figure

1-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11

KAPTUR may be Used to Explore Alternative
Control Center Architectures

Home Window Fields and Functions

Selecting a Specification
Finding a Specification by its Properties
Viewing a Specification
KAPTUR's Specification Editing Capabilities
Establishing a Template for a New Architecture
Specification Print Options
Using KAPTUR's Clipboard
Viewing a Specification's Distinctive Features
Text Window Options
Context Tools Help the User Avoid Getting Lost

Page

1-4

3-3
3-6
3-7
3-9
3-11
3-14
3-15
3-17
3-19
3-22
3-24

Iol

111



1 INTRODUCTION

This reportpresentsa high-levelspecificationand operationsconcept for
KAPTUR--a development environment based on Knowledge Acquisitionfor

Preservationof Tradeoffsand Underlying Rationales.KAPTUR isintended todo what

itsname implies:to captureknowledge thatisrequiredor generatedduringthe

development process,but thatisoftenlostbecause itiscontextual,i.e.,itdoes not appear

directlyin the end-productsof development. Such knowledge includesissuesthatwere

raisedduring development, alternativesthatwere considered,and thereasons for

choosing one alternativeover others.Contextual informationisusuallyonly maintained

as a memory in a developer'smind. As time passes,the memories become more vague

and individualsbecome unavailable,and eventuallytheknowledge isIosL KAPTUR
seeks tomitigatethisprocessof attritionby recordingand organizingcontextual

knowledge as itisgenerated.

KAPTUR also seeks to facilitate the application of knowledge to future
developments. From the relations between past and ongoing work, developers can fortify
their understanding of the current problem and its possible solutions. To support the
application of prior knowledge to new problems, KAPTUR must be able to place any
new knowledge that it acquires in the context of knowledge it already has. The following
table lists some of the types of knowledge that KAPTUR will manage.

• Specifications

• Tutorial explanations of components

• Distinctive features of a system

• Justifications for distinctive features

• Critiques

KAPTUR's knowledge base will contain contextual information normally left
implicit.

Each knowledge type in KAPTUR can be related to other knowledge types in
various ways. As the knowledge types change--for example, a new modeling technique
is introduced---the relations between knowledge types must also evolve. The table below
fists some of the relationships that KAPTUR will eventually support. Many of these
relationships are dependent on the information's content as opposed to its type. For
example, if the same item occurs in different artifacts and receives a different explanation
for each occurrence, these explanations should be linked.

1-1



• Links between items in specifications (including across description types and

specifications)

• Links between items and their explanations, justifications, and critiques

• Links between explanations, justifications, and critiques

• Links between terms in specifications, explanations, justifications and critiques

Information in KAPTUR will be linked by its content.

To support these dynamic, content-dependent relationships, KAPTUR will employ a
hypertext approach to managing its knowledge base. This approach will result in many
finks between artifacts in KAPTUR. If two artifacts incorporate a common element or

group of elements, then they arc linked by this item. If two systems address a common
issue in different ways, then they arc linked by the issue. KAPTUR will even link

systems ff they simply use the same terminology--even if the usage is slightly different
in the two systems. These links define a hypermedia network through which the
developer may navigate according to the current rt_cluirements. This network is similar to
a hypermxt network, except that the hypermedia network includes graphical as well as
textual objects. The primary advantage of this form of organization is that items are
linked according to their content and not according to a prvdefined set of relations. As
the content evolves, so do the relationships.

By linking items in KAPTUR's knowledge base according to content, the
relations can be structured to reflect the developer's view of the problem and solution

domains. This does not, however, guarantee that the relations will be useful for
comparing and contrasting potential solutions to a problem. Two developers, for
example, may use identical names for items that have different purposes. Comparing
artifacts by following the links between such items may be misleading. To mitigate this
problem, KAPTUR must ensure that at least sornv of the links between artifacts will aid
in comparison of alternatives. KAFrUR will do this through an analysis of d/st/nct/ve
features: those features of an artifact that differ from one or more accepted models (in the
POCC domain, for example, such features include new subsystems and additional
functions). Links will be established between artifacts based on their distinctive features.
For each distinctive feature of a new artifact KAPTUR will locate artifacts of the same

type with the same feature, and artifacts that incorporate alternatives to the feature, and
will link both of these groups to the new artifact.

The remainder of this document describes KAPTUR in more detail. Section 1.1

presents a typical scenario of the use of KAPTUR for exploring alternative control center
software achitecmres. Section 2 describes how KAFFUR will be used to understand

existing designs and to create new ones. Section 3 presents a detailed description of
these functions, including the screens that will make up the KAPTUR interface, and the
use of the options on each screen.

1-2



1.1 A Scenarioof the Use of KAPTUR

The idea for KAPTUR grew out of a domain analysis of control center software
(see the reports listed in Section 1.2). In the process of comparing software architectures
for different mission control center application processors, we found ourselves reverse
engineering the rationales for various decisions. These decisions concerned, for example,
the inclusion or omission of functions, the grouping of functions, and the levelling of
subsystems and components.

This process suggested that a reuse environment should not simply present to the
developer a set of alternative architectures that have been used for previous systems: the
developer would have no sound basis on which to select one architecture over the others,
to merge aspects of several, or to define yet another software architecture. It is, instead,
necessary to present the rationales and issues involved in choosing among the
alternatives.

Figure 1-1 illustrates how KAPTUR would be used to explore alternative
software architectures for a control center application processor. In the center of the
diagram there is a knowledge base containing information about the application domain.
This includes recommended architecture(s) and information about previously developed
systems. In this scenario, the developer has available a set of software requirements, and
wants to begin defining an applications processor to meet these requirements. The
developer sits down at the _ workstation and issues a command whose meaning
is something like the following:

I want to develop a control center applications processor. Show me what
they look like.

In response, KAPTUR displays the recommended generic architecture (upper tight-hand
box). In this scenario, there is only one recommended genetic architecture because that
is the conclusion (to date) of our domain analysis. That conclusion may change as our

analysis continues, or as the domain evolves; and certainly at lower levels of the software
there will be alternative recommended approaches for different requirements.

Upon examining the recommended architecture, the developer has the following
options:

ACCEIrl "the recommended architecture

Examine the DISTINCTIVE FEATURES of the recommended

architecture

Examine ALTERNATIVES to the recommended architecture

Def'me a NEW architecture

If the developer selects ALTERNATIVES, KAPTUR displays a list of existing
systems that are different from the recommended genetic architecture in some significant
respect (since the recommended architecture is genetic, almost every production system
will be different in some respects, if only by instantiating various generic parameters of
the recommended architecture). This display is shown in the lower left-hand box of
Figure 1-1. The developer can then select one or more of these systems to view their
respective architectures. As with the recommended architecture, the developer has the

1-3



I
I

I

\
\
\

Gr)

?,
.S=,,,I

om

,d::

<D
,4..,.I

O,)

Q

(,...
0

O,)

o_

O,)
I

<0

O

x
iii

0

(/)

cO
E

£:1::
::)
I--

I--

!

lh.=.

:o

Ii



option here of ACCEPTing one of the other architectures, or of deciding to define a
NEW architecture.

The DISTINCTIVE FEATURES of an architecture are those that are different

from common practice or the recommended approach, or that represent a non-trivial
decision about a significant issue. It is the knowledge and analysis underlying these
decisions that KAPTUR is intended to preserve. Distinctive features may correspond to
specific portions of an architecture (e.g., in Figure 1-1, the interface between the
Telemeter), and Command Subsystems), or they may represent some aspect of the
architecture as a whole (e.g., the distribution of initialization functions to all subsystems).

If the developer selects DISTINCTIVE FEATURES, KAPTUR will list the
distinctive features of the architecture being displayed, and will allow the developer to
select one or more of these features. KAFrUR will then display a representation of the
distinctive feature(s). In effect, the developer has the capability to zoom into a view of a
particular feature of the architecture. This is illustrated in the bottom-middle box in
Figure 1-1.

The developer can then examine the RATIONALES for this feature, i.e., the
reasoning underlying the decision that the feature represents. In the lower fight-hand box
in Figure 1-1, we illustrate the rationales as a list of object-oriented design criteria that
might underlie the decision. From this screen, the developer can request even more
detailed exaplanations, by asking to view the TRADE-OFFS that were considered in
reaching the decision. The developer can also ask to see ALTERNATIVES to this
decision, i.e., other systems that do not possess this feature because a different decision
was made.

If the developer selects NEW (from either the Recommended Architecture or the
Alternative Architectures screen), a graphical editor will be invoked to allow the
interactive definition of the new architecture. However, the definition of the new

archtitecture need not proceed completely from scratch. A clipboard capability in
KAPTUR will allow the developer to select portions of the recommended and/or
alternative architectures for inclusion in the new architecture.

Once a new architeeuae has been defined, KAPTUR will perform an automated

analysis to determine its distinctive features, i.e., the ways in which it is significantly
different fi'om the recommended architecture. For each distinctive feature, KAPTUR

will prompt the user to enter one or more rationales justifying the feature. This is shown
in the top-middle box (above LEGACY) in Figure 1-1.

The new architecture, together with its rationales, then becomes part of the
LEGACY of this domain, and will appear in the ALTERNATIVES list when KAPTUR
is next used. This is how the evolution of domain requirements and solutions is captured

in the knowledge base. At some point, the differences between the recommended
architecture(s) and new systems may become so numerous that a reevaluation of the
recommended architectures is necessary. The practical need for knowledge base

management therefore drives the ongoing.domain analysis process, ensuring that domain
models are kept current with present requLrements.

1-5



1.2 References

The following CTA reports summarize work leading up to this Operations
Concept:

Semi-Automatic Development of Payload Operations Control Center Software. Prepared
for Computer Sciences Corporation under Contract NAS5-31500, Task 28-11600.
October 31, 1988. This document contains additional references to previous work.

Generic POCC Architectures. Prepared for Computer Sciences Corporation under
Contract NAS5-31500, Task 28-11600. April 5, 1989.

Generic POCC Architecture: Revised Recommended Refinements and Object-Oriented

Interfaces. Prepared for NASA/Goddard SPace Flight Center Data Systems Technology
Division under Contract NAS5-30680, Task 12. June 30, 1989.

1-6



2 AN OVERVIEW OF KAPTUR

KAPTUR has two primary goals. The f'wst is to help users understand existing
software specifications and the reasons they are def'med as they are. The second is to
help a developer apply existing knowledge in creating new specifications. We are not
able to address these goals in their most general forms all at once. Instead, the initial

capability will be restricted to the types of specifications that arose in our domain
analysis of control center software (see the table, below). That analysis concentrated on
the top two or three levels of software architecture specification. The specification
models are quite general, however, and can be applied in other contexts as well.
Moreover, the operational concept of KAFTUR applies to the full range of artifacts that
are produced in the course of software development--only the initial capability is
restricted to this set of four types of specifications.

The following sections describe the goals in more detail and present an overview
of how KAFFUR will address them.

Understanding Existing Systems. Understanding an existing system involves browsing
its associated specifications (requirements, design, code, test plans, etc.) and examining
their key features. A developer may browse a specification for one of two reasons. First,
the developer may be looking for an explanation of this type of system or this type of
specification. Alternatively, the developer may wish to become familiar with a particular
system by looking at its specifications. The primary difference between these two forms
of browsing is the level of understanding the developer brings to the process. In the first
case, the developer lacks background in the domain to which the system belongs, or in
the specification technique used. In the second case, the developer is familiar with the
domain and the specification technique, but wants to know the details of a specific case,
i.e., how a given specification is different from others of the same type (and why).
KAPTUR will support both types of developers, and will allow a developer to move
freely between these two modes of browsing.

Systems are typically described from various "views." One of KAI'rUR's key
features will be to allow developers to move arbitrarily between various views, and
between levels within a view. Initially, KAPTUR witl support a limited number of view
types,which arelistedinthe tablebelow. KAPTUR's features,however, are view-

independent. This will allow the set of supported view types to grow to support new

system models, new design methodolo_es, and other application domains. Ultimately,
the modeling techiniques behind the various views will be unified in KAFrUR's
underlying knowledge base structure.

• Entity Relationship Diagrams (ERDs)

¢J

Data Flow Diagrams (DFDs)

Entity-Interface Diagrams (ElDs)

Composition Graphs (CGs)

Specification Types Supported by KAPTUR

2-1



TheEntity RelationshipDiagrams(EROs)form the basis of a software
architecture specification. The EROs identify the major entities of the system and the
ways in which they are related to each other. A software achitecture definition may
contain a hierarchy of EROs, each level representing a more detailed definition of the
system. The DFDs show the data flow between entities in the system. When defined to a
sufficient level of detail, DFDs may also show the functions performed by each entity.
The Entity Interface Diagrams (EIDs) provide a detailed description of dependencies
between entities. They define the functions performed by each entity and the functions
of other entities upon which each entity depends. The Composition Graphs (CGs) show
the end-to-end processing of system-level stimulae.

One reason for a developer to browse the _ knowledge base is to
understand, in general terms, the structure and function of a system or component in a
given domain. We want to present the developer with one or more recommended generic
models. There may be several recommended models, each satisfying different
constraints. KAPTUR must be able to support the existence of several recommended
solutions, and it must help the developer discern which solution is most applicable to a
given situation. To support developer tutorials, each item in a recommended model (or
solution) will have a textual description associated with it. The description will explain
what the item is, its role in the model, and locations where additional information on the

item may be found. _ will support explanations of other models as well, but
only the recommended models are guaranteed to have them.

Feature Browsing. A developer browsing a specification may want to know what
distinguishes it from other specifications of the same type. Many distinctive features will
follow from the problem the specified system is intended to solve. At the developer's
request, KAFFUR will retrieve and display an specification's distinctive features. The
features retrieved at any given time will depend on the view that the developer is
currently browsing. For example, the features shown at the top-most level of the ERD
hierarchy wiU be different from those shown for a low level DFD. Not every element of
a specification corresponds to a distinctive feature. The distinctive features are those that
differ from the recommended model or from common practice.

For each distinctive feature of a specification, there will be a corresponding set of
rationales. These rationales will explain why the feature is present. The rationales may
consist of several levels of justification for the feature. A general justification will
present the design principles that the feature promotes and/or violates. A more detailed

justification will map this general pr!n.ciple onto the specific elements of the specification
whose configuration or definition is in question. The developer may select the level of
justification to be viewed, and may move between levels as desired.

Creating New Specifications. The second major use of KAPTUR is to create new
specifications. There are three ways in which a developer may do this; these are listed in
the table below.

• Specify from scratch

• Build the specification from portions of other specifications

• Use another specification as a template

Techniques for Creating Specifications

2-2



To support the specification of software architectures, for example, KAPTUR will
provide full architecture editing capabilities. Developers may add new items to existing
architectures, as well as delete and modify existing items. These capabilities will also
allow the developer to define a new architecture from scratch.

We rarely, however, specify anything really from scratch. A better way is to base
the specification on successful accomplishments from the past, i.e., by using existing
specifications as templates which may then be modified. The developer thereby inherits
the results of much of the previous work. For example, if a developer uses an existing
architecture as a template, and modifies only a single entity, then the new architecture
inherits all of the other diagrams in the architecture. It also inherits all of the
explanations, justifications and features attached to these diagrams. The effort required
to develop these items would be saved.

The idea of using template specifications may be extended to include using
several specifications as templates. For example, portions of several architectures may
be selected and then combined to form a new architecture. KAFFUR wiU support this
approach by means of a clipboard system. Developers may add to the clipboard as they
browse the existing specifications, selecting those portions they desire. They may then
invoke the specification editor using either another specification as a template or starting
from scratch, and paste items from the clipboard into the specification. Items may be
pasted at any level and in any diagram type within the specification. When an item is
placed on the clipboard or pasted from it, the item will inherit its previous links. The
major drawback of this method is that it may be difficult to achieve consistency between
the collected items as they are added to the new specification. Naming conventions and
interfaces will probably have to be adjusted.

Capturing Design Understanding. As parts of a new system are specified, KAPTUR will
automatically establish links between them and other specifications (or portions of them).
These links will enable future developers to understand how the new specification relates
to its predecessors.

In addition to capturing relations between specifications, KAFTUR also has
facilities for capturing deeper levels of understanding: explanations, justifications, and
critiques of distinctive features. Such information may be associated with any item in a
specification, but it must be associated with the distinctive features. For each such
feature it is important that the developer provide some justification; otherwise, future
developers will be unable to understand why this feature was adopted and under what
conditions it should be adopted again.

Consistency Checking. Consistency between the views of a system must be maintained.
Therefore, if a view is modified, then all related views may need to be modified to keep
them consistent with the modified view. Ultimately, KAPTUR will assist the developer
in producing consistent specifications by marking inconsistencies as they are introduced.
KAFrUR wiU inform the developer of these inconsistencies at the end of an editing
session. It will then be the developer's responsibility to make the necessary changes.

Configuration Control. Using existing specifications as templates atlows developers to
inherit work from past developments, but it also entails some risks. Developers should
be careful when building from models that are not generall,y accepted, or that are
incomplete or unjustified. KAFrUR wiU perform a certain amount of configuration
management in order to reduce the potential for such problems. Each specification in

2-3



KAFFUR's knowledge base will be assigned a status attribute with four possible values,
which are listed in the table below.

• Incomplete: author intends to further edit the specification

• Unjustified: author has completed the specification but has not provided
justifications for distinctive features

• Complete: author has justified the distinctive features

• Accepted: the specification has been approved for future reuse

Levels of Model Validity in KAPTUR

The first level (i.e., incomplete) indicates that the specification is still being defined. The
second level indicates that the definition is completed but that its unique features have
not been justified. The third level indica_s that the distinctive features have been
justified, but that the community of potential reusers has not yet accepted the
specification as a viable model for reuse. The final level indicates that the specification
is accepted as a viable reusable model. When a developer tries to base a new system on
an unaccepted model, KAPTUR willissue a warning. The developer may still use the
unaccepted specification as a template, but should be on guard for possible problems.

2-4



3 THE KAPTUR INTERFACE

In this section we describe the user interface for KAPTUR's fhst prototype.

Section 3.1 presents some of the general issues associated with the interface, and Section
3.2 presents the windows that make up the interface.

3.1 General Interface Issues

KAPTUR's first prototype will be hosted on a Sun Workstation and will be based
on the X Windows system and NASA's TAE Plus tool. Many of the terms used in this
section are from this domain. Some of these are mouse, select, cursor, window, andfielcl.

We assume readers are already familiar with these terms. If not, they should consult a
document that discusses them, such as An Introduction to TAE Plus.

In keeping with the TAE Plus tradition the interface presented here is for the most
part modeless. This means that the options available in a given window are not
dependent on selections made in other windows. There are only two exceptions to this.
The fwst one is dialog boxes. Dialog boxes are windows that inform users of mistakes
they have made and that request users to provide missing parameters. For example, one
dialog box might advise a user to save part of an edit session before moving on to another
edit session. Another dialog box might request the user to specify which item is to be
edited before an editor is invoked.

The second exception to modeless operation has to do with the difference
between editing and viewing an item. After opening a window to view an item, a user
may then choose to jump to other items in the system. When jumping from a View
Window (see below), the user may not modify any subsequently visited items. If, on the
other hand, the jump starts from an Edit WindQw, the user may edit the items
subsequently visited.

We have tried to make the interface as friendly as possible. To this end, each
window in the environment includes a standard set of options. These options provide
guidance on how to use the windows, and allow the user to tailor the environment to his
own preferences. Each of these options is described in the table below.

Help: The help option provides an explanation of each field and button in the
window. If the user selects the entire window (by clicking on the border),
KAPTUR will provide a high-level description of the window's purpose. If
the user selects a field or button in the window, KAPTUR will provide a
detailed explanation of how the item is used.

Close: The close option closes the current window. If the user has not invoked
any options in the window, the close option will return the user to the
previous dialog location (i.e., window).

Options Available on Every Window

3-1



Window manipulation: The window option in each window allows the user to
move and resize windows in the environment.

Where: The where option invokes the Context Window (see the following
section). This window allows the user to determine how the current
window was arrived at (i.e., the series of options invoked), and it allows the

user to return to a previous point in the session.

Options Available on Every Window (cont.)

KAPTUR will provide a concept of development directory in order to support
organizational groups that have their own sets of conventions, standard practices,
priorities etc. Since the purpose of KAPTUR is to promote the reuse of the development
knowledge, and thus encourage uniformity of development approach wherever possible
(even between development groups), a means of exporting and importing knowledge
from/to development directories will be provided.

KAPTUR will provide the user with a single Clipboard for a session. The

Clipboard is a location where the user can store miscellaneous pieces of information,
obtained from various sources during a session. The user may also retrieve these
information items at any time in order to "paste" them into an artifact being created.

3.2 The KAPTUR Interface

This section presents the windows that make up KAFTUR's user interface. The
discussion for each window includes a description of the options available. The windows
form a hierarchy reflecting the order in which they invoke each other. At the top of the
hierarchy is the Home Window, which provides access to the top-level KAPTUR
commands.

Home Window. KAPTUR's Home Window is shown in Figure 3-1. It allows the user

to specify the current development directory and to invoke KAPTUR's top-level
functions. The Home Window appears whenever a user invokes KAPTUR. The user's
name (i.e., user id) is automatically placed in the User Name field upon invocation. It is

important for the user to verify this name because the user id, along with the development
directory, will determine the user's access rights and privileges.

Whenever the user invokes an option from the Home Window, KAPTUR fh-st
checks to see that the information needed to perform the request has been provided. If it
has not, the user is prompted accordingly. The most common prompt is for the user to
name an artifact (usually a specification) on which the option is to be performed---see the
View option, below. Once the needed information has been provided, KAPTUR checks
to see that the information is valid and that the user has the necessary access privileges. If

any problems are detected, KAFrUR will display a dialog window explaining the

problem and then cancel the op.tion. For example, if a user tried to edit a specification for
which he did not have over-write permission, KAPTUR would display a dialog window
describing the access problem and then terminate the edit option. The user can then

select another option.

3-2



r KAPTUR

DEVELOPMENT DIRECTORY: I

USER NAME: I

J

Figure 3-1: Home Window Fields and Functions



The following table describes the options available from KAFFUR's Home
Window.

• Development Directory: Displays the current development directory. This field
may be modified to change the development directory.

• User Name: The current user's id, as specified at log in. This field may not be
modified.

View: The view button invokes the View Window. However, before this

window may be invoked, the user must select the specification to be
viewed. This is done using the Selection Window, which is displayed prior
to the View Window.

Edit: The edit button invokes the Edit Window. However, before this window

may be invoked, the user must select the specification to be viewed. This is
done using the Selection Window, which is displayed prior to the View
Window.

New: The new button invokes the New Window. From this window the user

identifies what specifications are to be used as templates for the new

specification.

Print: The print button first invokes the Selection Window, in which the user
identifies the specification to be printed. The Print Window is then invoked
to determine the print options to be used.

* Import: The import button invokes a dialog window which allows the user to
specify a source development directory and a specification name to be
copied to the current development directory. To use this option, the user
must have the necessary access rights.

• Export: The export button first invokes the Selection Window, in which the
user identifies the specfication to be exported. A dialog window is then
invoked for the user to name a destination project directory. The
specification will be copied to this destination. To use this option, the user
must have the necessary access rights.

Home Window Fields and Functions

Each invocation of KAPTUR (i.e., the Home Window) establishes a new user

session. Any windows created during the session are considered sub-windows of the
session and are only visible to other sub-windows of the same session. This means that
the user may only move, cut, and paste between windows associated with the same
session. To avoid confusion, a user should not engage in simultaneous KAPTUR
sessions.

The Home Window will remain on the screen throughout a user's session, and its
features may be used at any time in the session. This means that a user may have several
specification view and editing windows open at the same time. Several windows may
even be used to show different aspects of the same specification. The maximum number

3-4



of windows will be restricted only by the host system's available memory. This feature
makes it easier to compare specifications and transfer information between them.

Selection Window. The Selection Window allows the user to select a specification as an

argument to a KAPTUR option. Selections may be made in terms of the specification
name and/or identification of items in the specification. The window's layout is
presented in Figure 3-2, and its options are described in the table below.

Specification List: This is a scrollable text window that displays the
specifications available in the current development directory. An item in
the window may be selected by moving the cursor over it and clicking the
left mouse button.

• Select: When the select button is pressed (using the mouse), it causes the name
of the currently selected specification to be returned to the calling window.
The Select Window is then closed.

• Find: The find button invokes the Find Window, which allows the user to locate
specifications according to the items they contain. When the Find operation
is completed, the specification name it returns appears as selected in the

Specification List.

Selecting an Architecture

Find Window. Figure 3-3 shows the Find Window. The Find Window is an extension of
the Selection Window. It allows the user to find a specification according to the items it
contains. For the first prototype the only item types supported are entities, relations, and
functions. This list may be expanded as other diagram types are added to the tool.

To specify a search, the user fills in one or more fields in the Find Window. The
search is then invoked using the find button. If the search is successful, a dialog box
containing the list of the located specifications will appear. The user may then select a
specification from this list. The last selection made will be displayed in the last found
field. If the user is happy with this selection, he may invoke the select button which will
close the Find Window and return the selection to the calling Selection Window;
otherwise,he may specifyanothersearchand continue thefindprocess.

The tablebelow containsa descriptionof the fieldsand buttonson the Find
Window.

Entity: This is a modifiable text field in which the user may enter an entity
name. This name isthen used as partof the next search.

Function: This is a modifiable text field in which the user may enter a function
name. This name is then used as part of the next search.

Finding a Specification by its Properties

3-5



+1

s_

<2E_

L__ J

Figure 3-2: Selecting a Specification



l CANCEL

a,m'rY: I I

_UNC'r_: i I

RE_'r_: I I

a,rrrrY_C_M: I I

a,n'rrY"to: I I

_'r r-o_o: I I

Figure 3-3: Finding a Specification by its Properties



• Relation: The relation field contains several sub-fields, each of which is a

modifiable text field in which the user may enter text. The fields allow the

user to specify the name of a relationship, the entity at its head and the
entity at its tail. All or one of these fields may be used in locating a

specification having the given relationship.

• Find: Thefind button invokes the find function, which uses the information in
the text fields to search for specifications having the given properties.

• Last Found: The last found field is a non-modifiable text field that displays the
specification last selected by the user. This value is returned to the
Selection Window when the select button is invoked.

• Select: The select button closes the Find Window and returns the current value

of the last found field to the Selection Window.

Finding a Specification by its Properties (cont.)

View Window. The View Window allowsthe userto study thedetailsof a specification.

At any one time,the window willonly displaya singleview of the specification(i.e.,

diagram),but the usermay invoke the window's optionstomove tootherviews. For the
firstprototype,the only views supported areE-R diagrams with functionlistsforeach

entity. Other diagram types will be added in the future.

Figure 3-4 presents an example of a View Window. Its options are described in
the table below.

• Specification View: The specification view displays the current view of the
specification, ff no view has been specified, then the top-level E-R diagram
is displayed. In the first prototype, specification view will be a scrollable
text screen that displays a textual representation of the diagram. This will
be changed to a graphics editor in the future.

up and Down: The up and down buttons allow the user to navigate through a
speeification's diagram hierarchy. Up causes the current diagram in the
specification view to be replaced by its parent diagram. Down first invokes
a dialog window which prompts the user to select an entity, and then
replaces the current diagram in the specification view with the selected
entity's diagram (if it exists).

Functions: The functions button ftrst invokes a dialog window which prompts
the user to select an entity. Then it creates a text window and places the
selected entity's associated functions in the text window.

Features: The features button invokes a text window which displays the
distinctive features of the current view. The features window will provide a

means of moving from features to their rationales, critiques, and
explanations.

Viewing a Specification

3-8



i

IV
i

SPECIFICATION NAME

ENTITY 1:
RELATED TO:

ENTnx A

ENTITY 2:

e

REL_A

CLOSE

CHANGE LEVEL: _

MORE INFORMATION:

UTIUTIES:

J

Figure 3-4: Viewing a Specification



• Rationales: The rationales button invokes a text window which displays the
rationales associated with a view. Unlike the rationales associated with a

feature, the rationales associated with a view may refer to the view as a

whole or to portions of a view.

Critiques: The critiques button invokes a text window which displays the
critiques associated with a view. Unlike the critiques associated with a
feature, the critiques associated with a view may refer to the view as whole

or to portions of a view.

Explanations: The explanations button first invokes a dialog box requesting the
user to select an item (i.e., an entity, relationship, or function) in the current
view. If the user selects an item, then a text window containing an

explanation of the item is displayed. If no item is selected, a text window
explaining the view as a whole is displayed.

Print: This button allows the user to print information from the current view. It
invokes the Print Window, which allows the user to specify the options to

be used in printing the view.

Viewing a Specification (cont.)

Edit Window. The Edit Window contains options that allow the user to modify the
items in a specification. The two most common types of modification are insertion and
alteration. To insert items, the user moves the cursor to the place where the insertion is

desired and begins typing. To alter items, the user selects a piece of text by clicking the
left mouse button at the beginning of the text and the right mouse button at the end of the
text and then issues the appropriate alteration commands (e.g., delete). The user may
also move items by pasting them on the Clipboard, deleting them from their current
location, and then pasting them from the Clipboard to a new location. Copies may be
made in a similar fashion. The user may also insert new items from the Clipboard into

the specification.

Figure 3-5 shows an example Edit Window, and the table below describes the
options available in it. Many of the options are similar to the options in the View
Window, except that they allow the user to modify the items instead of just viewing
them. One major difference pertains to requests for an item that does not exist in the
current view. When this occurs in a View Window, a dialog box explaining the problem

is invoked and the option is terminated. In the Edit Window a blank or partially filled
template is displayed, so that the user may create the item.

Current Specification View: This is the current view of the specification,
including any modifications the user may have made to the view. If no view
has been specified, then the top-level ER diagram is displayed. In the first
prototype, the current specification view will be a scrollable text screen that
displays a textual representation of diagrams. This will be changed to a

graphics editor in the future.

KAPTUR's Specification Editing Capabilities

3-I0



SPECIRCATION NAME

ENTITY 1:
RELATED TO:

ENTITY_A

ENTITY 2:

I, :

EDIT ATTACHED INFORMATION: (__ _

Figure 3-5: KAPTUR's Specification Editing Capabilities



up and Down: The up and down buttons allow the user to navigate through a

specification's diagram hierarchy. Up causes the diagram in the current
specification view to be replaced by its parent diagram. Down first invokes
a dialog window which prompts the user to select an entity, and then
replaces the diagram in the current specification view with the selected
entity's subdiagram, ff the entity does not have a subdiagram, then a
template diagram is created for it and this template is placed in the current
specification view. Before moving to a new diagram, the up and down
options check to make sure the current specification view has been saved.
If it hasn't, a dialog box is invoked that prompts the user to do so.

• Functions: The functions button flu'st invokes a dialog window which prompts
the user to select an entity, and then it displays a text window listing the
functions associated with the entity. Functions listed in the window may be
modified as desired.

• Features: When the features button is selected, an analysis of the current view
is performed. This analysis determines the distinctive features of the
current view.. Descriptive identifiers of any distinctive features found are

displayed in a text window. The user may browse but not modify this list.
The user may, however, create and/or modify explanations, critiques and

justifications associated with the distinctive features.

• Rationales: The rationales button invokes a text window which displays the

existing rationales associated with the current view. The user may modify
these or provide additional rationales.

Critiques: The critiques button invokes a text window which displays the
existing critiques associated with the current view. The user may modify
these or create additional critiques.

! Explanations: The explanations button fit-st invokes a dialog box requesting the
user to select an item (i.e., an entity, relationship, or function) in the current
view. ff the user selects an item, a text window explaining the selected item
is displayed. If no item is selected, the text window contain an explanation
of the view as a whole. The user may modify or add to the existing

explanations.

• Print: The print button allows the user to print information from the current
view. It invokes the Print Window, in which the user can specify options to

be used in printing.

• Save: The save button saves the current view in the KAPTUR knowledge base.

• Last: The last button loads the last saved version of the current specification
view into the Edit window.

Cancel: The cancel button loads the version of the current view that existed

before the current edit session began. This in effect ignores any saves that
have been performed during the edit session.

KAPTUR's Specification Editing Capabilities (cont.)

3-12



New Window. The New Window is activated whenever the user selects the new button
from the Home Window. It i used to create a new specification. The user provides a

name for the new specification, and may identify an existing specification that will serve
as a template for the new one. KAPTUR copies the template and invokes an Edit
Window with the new copy. The user may then modify the new specification as desired.

If no template is specified, an empty Edit Window is created instead.

Figure 3-6 shows a New Window. Its options are described in the table below.

• Specification Name: The specification name field is a modifiable text field in
which the user specifies the new specification's name.

• Based On: The based on field is a modifiable text field that contains the

template specification's name. The user may type a name into the field or
use a Selection Window to choose the template. This latter option is
performed using the select template button (see below).

• Select Template: The select template button invokes a Selection Window in
which the user may select a template for the new specification. See the
description of the Selection Window (above) to see how this is done.

• Define Specification: The define specification button invokes an Edit Window
in which the new specification will be defined. If a template name appears
in the based on field, this template is copied and placed in the Edit Window.
If none is specified, the Edit Window will be empty.

Establishing a Template for a New Specification

In addition to using a complete specification as a template, the user may also use
portions of a specification. This is done by yanking (i.e., copying) portions from other
specifications and placing them on the Clipboard, then moving them from the Clipboard
ir_to the Edit Window for the new specification.

Print Window. The Print Window allows the user to specify options for printing
information contained in or associated with a specification. Complete specifications are

printed from the Home Window. Individual views are printed from a View or Edit
Window. Each print option may be turned on or off by clicking on the yes/no radio
button beside each option. Figure 3-7 shows an example Print Window. An explanation
of the print options is presented in the table below.

• View: If the view button is set to yes, the specification view(s) are printed.

• Features: If the features button is set to yes, the distinctive features associated
with the specification are printed.

• Rationales: If the rationales button is set to yes, the rationales associated with

the specification and its features are printed.

Specification Print Options

3-13



SPECIFICATION NAME: I

BASED ON: J J

_ELECT TEMPLA_"_

Figure 3-6: Establishing a Template for a New Specification



CLOSE

PRINT:

YES

[]

[]

[]

[]

[]

NO

[] P,crU.E

[] FEATURES

[] _T_u!s

[] sxPu_

[] CRmQUSS

Figure 3-7: Specification Print Options



• Explanations: If the explanations button is set to yes, the explanations
associated with the specification and its features are printed.

• Critiques: If the critiques button is set to yes, the critiques associated with the
specification and its features are printed.

Specification Print Options (cont.)

Clipboard. The Clipboard allows the user to tranfer information between specifications
and between items within specifications. There is a single Clipboard per user session,
and it is activated from the Home Window using the clipboard button. At the end of a

session, the user may save the Clipboard and then recall it in a furore session.

Items may be placed on the Clipboard in two ways. First, the user may position
the cursor on the Clipboard and begin typing. The text will be entered at the current
cursor position. This feature allows the Clipboard to be used as a note pad. Secondly,
the user may copy items from another window to the Clipboard. This is done by
selecting the item using the mouse (in the other window) and then invoking the yank

button on the Clipboard.

Textual items on the Clipboard may be edited as desired. To add text, position
the cursor and begin typing. To delete text, position the cursor and use the BACKSPACE
key to delete characters to the left of the cursor. All types of items (e.g., textual and
graphical) may be deleted using the Clipboard's delete and clear buttons. The delete
button will delete any currently selected items from the Clipboard, and the clear button
will delete all items from the Clipboard.

Items may be transferred from the Clipboard to other windows as follows: fast
select the item on the Clipboard using the mouse; then click the left mouse button at the

position in the other window where the item should be inserted; then invoke the stuff
button on the Clipboard.

Figure 3-8 presents an example Clipboard window. The options available on the
Clipboard are described in detail in the table below.

Clipboard View: The clipboard view is a scrollable window that displays the
items currently on the Clipboard. Items are added to the view using the
yank option or by typing text at a selected location. Items are deleted using
the delete and clear buttons, or by backspacing over them.

Stuff: The stuff button allows the user to copy items from the Clipboard to
another window. The item is first selected in the clipboard view. The user
then selects the place for insertion in the other window, and lastly invokes
the stuff button. Several stuffs may be performed in succession without re-
selecting the item to be stuffed.

Using KAPTUR's Clipboard

3-16



ITEM I

ITEM 2

_EM N

CLOSE

k

Figure 3-8: Using KAPTUR's Clipboard



Yank: The yank buttonallowsthe usertocopy.itemsfrom otherwindows to the
Clipboard. The userfirstselectsthe item m a window (includingpossibly

the clipboardview itself),then selectsa placein the clipboardview for
insertion,and lastlyinvokes theyank button.The same item may be

yanked severaltimes without re-selectingiteach time. Ifa positioninthe
Clipboard isnot selected,theitem willbe placed atthe bottom of the

Clipboard. Each time an item isadded tothe Clipboard itbecomes the

currentlyselecteditem on the Clipboard. This allowsthe userto pcrforrna

yank followed imrnediatclyby a stuffwithouthaving tolocatethe item and

then selectitagain.

• Clear: The clear button deletes all items in the clipboard view.

• Delete: The delete button deletes the currently selected items from the

clipboard view.

• Save: The save button saves the current clipboard view to a file. Before the

save is performed, a dialog box is invoked for the user to specify the file
where the clipboard is to be saved.

• Load: The load button first invokes a dialog window which prompts the user

for the clipboard file to be loaded. It then loads the file into the clipboard
view. If the current view has not been saved, the user is prompted to

perform thesave beforetheload isPerformed.

Using KAPTUR's Clipboard (cont.)

Distinctive Features Window. A Distinctive Features Window is used to display the

distinctive features associated with a specification view. It may be invoked from either a
View or an Edit Window. In either case, the features may not be modified since they are

determined automatically (see the features option under the Edit Window). Only. one
feature is displayed at a time, but the user may scroll through a set of features using the
window's next and previous buttons.

There are severaltypesof additionalinformationthin may be associatedwith a
distinctivefeature.For example: otherspecificationswith the same feature,

specificationsillustratingalternativestothe feature,rationalesfor thefeature,
explanationsof thefeature,and critqucsof thefeature.Each of thesemay be displayed

by invoking theappropriateoptionfrom theFeaturesWindow (seethetablebelow). If
theFeam_resWindow has been invoked from an EditWindow, theseitems may alsobe

modified.

Figure 3-9 presents an example of a Distinctive Features Window.

• Feature field: The feature field displays a single feature. It may not be
modified. In the present prototype, this will be a textual representation of
the feature; in the future it may be changed a graphical representation when

that is most appropriate.

Viewing a Specification's Distinctive Features

3-18



Relationship 1

Entity1

Entity2

Next

Figure 3-9: Viewing a Speclflcatlon's
Distinctive Features



• Next and Previous: The next button replaces the current feature in the feature
field with the next feature associated with the current view. The previous
button replaces the current feature with the previous feature. Features are
not arranged in any particular order--they are presented in the order in
which they were identified.

Other Uses: The other uses button invokes a Text Window that displays a list
of other specifications with the same feature. From this window, the user
may select one (or more) of these specifications to view. If the user invokes
the view option, a view window will be opened with the appropriate
specification. If the feature can be localized within the specification, the
view will be set to display that location.

• Alternatives: The alternatives button invokes a Text Window that displays a list
of specifications that illustrate alternatives to the current feature. From this
window, the user may select one (or more) of these specifications to view.
If the user invokes the view option, a view window will be opened with the
appropriate specification. If the alternative can be localized within the
specification, the current view will be set to display that location.

• Rationales: The rationales button invokes a Text Window that displays the
rationales associated with the current feature. One rationale will be

displayed at a time. The user may scroll through the rationales using the
next and previous buttons. If the Features Window was called from an Edit
Window, the user may edit the rationales.

Critiques: The critiques button invokes a Text Window that displays the
critiques associated with the current feature. One critique will be displayed
at a time. The user may scroll through the critiques using the next and
previous buttons on the Text Window. If the Features Window was called
from an Edit Window, the user may edit the critiques.

Explanations: The explanations button invokes a Text Window that displays
the explanations associated with the current feature. One explanation will
be displayed at a time. The user may scroll through the explanations using
the next and previous buttons. If the Features Window was called from an
Edit Window, the user may edit the explanations.

Viewing a Specification's Distinctive Features (cont.)

Locating alternatives to a distinctive feature is not as simple as f'mding a
specification that does not illustrate the feature. KAlrI'UR must help the user understand
how the located specification represents an alternative. This is a context sensitive
process, depending on the goals of the current user session.

Text Windows. Text Windows are a general class of window that are used for
displaying textual items and for navigating the hypertext links between the items in the
specification knowledge base. A given text window can display only one class of text at
a time. For example, a text window might display an explanation of some item in a
specification. However, a text window can invoke other text windows that display other
types of information. The user might for example move from an explanation of one item

3-20



to otheritemsthat usethe same explanation. Moving between item types is

accomplished through the jtanp option (see below).

The table below describes the options that will be available from text windows in
general. In addition to these, a given text window may have several additional options,
or it may omit some of the general options. These alternatives are determined by the
calling window. For example, the Other Uses text window associated with the Features
Window will have a scrollable text field for displaying a list of specification names. It
will not have the next and previous buttons. Figure 3-10 presents a generic Text
Window.

Text View Field: The text view field is used to display the text associated with
the window. It may display a single item within the text, or a complete list
of the items. A given text window's view field may or may not be
modifiable. These attributes are determined by the calling window.

Next and Previous: The next and previous buttons (if present) allow the user to
scroll through the items associated with the window.

Jump: The jump button allows the user to follow the links from the items in a
Text Window to other items in the KAPTUR knowledge base. Any type of
item in the knowldge base, including specifications, views, functions,
rationales, critiques, and explanations, may be accessed by means of a
jump. To initiate a jump, the user first selects an item in the text view, and
then selects the jump button. A dialog window then asks the user what type
of item to jump to. In response, the user may specify one or more types of
items in the system---possibly all types. The KAPTUR knowledge base is
then searched for an item that is linked to the selected item and whose type
matches one of the specified types. If the search is successful, a window is
opened with the located item in it. The type of window opened will depend
on the type of item found. If no items are found, a failure message is
returned.

Text Window Options

Context Window. The Context Window displays the path by which a user arrived at a
given window, and allows the user to return to any window in the path. It is invoked
through the Where button, which is available on all windows. Figure 3-11 contains an
example Context Window; its options are described in the following table.

• Path View: The path view is a scrollable text window that describes the path by
which the user arrived at the current window. The description is a list of

window types and item names. The item name defines the item being
viewed in the corresponding window.

• Last: The last button closes the current window (before the Context Window),

and reopens the last window listed in the path view. If the last entry is the
Home Window, the current window is simply closed.

Context Tools Help the User Avoid Getting Lost

3-21



Relationship 1

Entity1

Entity2

Previous

4--
Next

Figure 3-10: Text Window Options



• Previous: The previous button allows the user to return to any window listed in
the path view. Before invoking the option, the user must select an item in
the path view. Once the option is invoked, all windows between the current
window and the selected window are closed, and the selected window is

reopened. If open files are detected, the user will be prompted to save them
before the window is closed.

Home: The home button deletes the current path and returns the user to the
Home Window. Any windows that have been opened along the path are
closed. If open files are detected, the user will be prompted to save them
beforethe window isclosed.

Continue: The continue button allows the user to reinvoke the last jump
operation to continue a search. When continue is used, KAPTUR searches
the current context path to see where the search has been performed before
and what results were viewed. It then omits these results as solutions to the

continued search. In effect, this feature allows the user to see the first item

with a given set of properties, then the second, and so on.

Context Tools Help the User Avoid Getting Lost (cont.)

3-23



Ell"

VIEW

SPC1 .TOP

SPC2.V1

J

Figure 3-I I: Context Tools Help the User
Avoid Getting Lost


